国产精品免费视频观看拍拍,亚洲中文字幕一区二区三区,国产精品麻豆va在线播放,国产日韩欧美三级在线

關注公眾號

關注公眾號

手機掃碼查看

手機查看

喜歡作者

打賞方式

微信支付微信支付
支付寶支付支付寶支付
×

分子診斷技術、PCR技術、基因測序技術的區(qū)別、原理(二)

2021.6.29

  二、核酸序列測定


  測序反應是直接獲得核酸序列信息的唯一技術手段,是分子診斷技術的一項重要分支。雖然分子雜交、分子構象變異或定量PCR技術在近幾年已得到了長足的發(fā)展,但其對于核酸的鑒定都僅僅停留在間接推斷的假設上,因此對基于特定基因序列檢測的分子診斷,核酸測序仍是技術上的金標準。


  (一)第1代測序


  1975年Sanger與Coulson發(fā)表了使用加減法進行DNA序列測定的方法,隨后Maxam在1977年提出了化學修飾降解法的模型,為核酸測序時代的來臨拉開了序幕。


  Sanger等[12]于同年提出的末端終止法(Sanger測序法)利用2'與3'不含羥基的雙脫氧核苷三磷酸(ddNTP)進行測序引物延伸反應,ddNTP在DNA合成反應中不能形成磷酸二酯鍵,DNA合成反應便會終止。如果分別在4個獨立的DNA合成反應體系中加入經(jīng)核素標記的特定ddNTP,則可在合成反應后對產物進行聚丙烯酰胺凝膠電泳(polyacrylamide gel electrophoresis,PAGE)及放射自顯影,根據(jù)電泳條帶確定待測分子的核苷酸序列。Appied Biosystems公司在Sanger法的基礎上,于1986年推出了首臺商業(yè)化DNA測序儀PRISM 370A,并以熒光信號接收和計算機信號分析代替了核素標記和放射自顯影檢測體系。該公司于1995年推出的首臺毛細管電泳測序儀PRISM 310更是使測序的通量大大提高。Sanger測序是最為經(jīng)典的一代測序技術,仍是目前獲取核酸序列最為常用的方法。


  (二)第2代測序


  1.焦磷酸測序(Pyro-sequencing)


  不同于Sanger測序法所使用的合成后測序理念,Ronaghi分別于1996年與1998年提出了在固相[13]與液相[14]載體中通過邊合成邊測序的方法-焦磷酸測序。其基本原理是利用引物鏈延伸時所釋放的焦磷酸基團激發(fā)熒光,通過峰值高低判斷與其相匹配的堿基數(shù)量。由于使用了實時熒光監(jiān)測的概念,焦磷酸測序實現(xiàn)了對特定位點堿基負荷比例的定量,因此在SNP位點檢測、等位基因(突變)頻率測定、細菌和病毒分型檢測方面應用廣泛。由于熒光報告原理不同,其對于序列變異的檢測靈敏度從Sanger測序的20%提高到了5%。但由于該技術的儀器采購與單次檢測成本較高,目前尚未得到大規(guī)模的臨床使用。


  2.高通量第2代測序


  目前常見的高通量第二代測序平臺主要有Roche 454、Illumina Solexa、ABI SOLiD和Life Ion Torrent等,其均為通過DNA片段化構建DNA文庫、文庫與載體交聯(lián)進行擴增、在載體面上進行邊合成邊測序反應,使得第1代測序中最高基于96孔板的平行通量擴大至載體上百萬級的平行反應,完成對海量數(shù)據(jù)的高通量檢測。該技術可以對基因組、轉錄組等進行真正的組學檢測,在指導疾病分子靶向治療、繪制藥物基因組圖譜指導個體化用藥、感染性疾病的病原微生物宏基因組鑒定及通過母體中胎兒DNA信息進行產前診斷等方面已經(jīng)取得了喜人的成績。然而,由于該技術需要對DNA進行片段化處理,測序反應讀長較短(如Solexa與SOLiD系統(tǒng)單次讀長僅50bp),需要對數(shù)據(jù)進行大規(guī)模拼接,因此對分子診斷工作者掌握生物信息學知識提出了更高要求,以利于后期的測序數(shù)據(jù)分析。


  (三)第3代測序


  第3代測序技術的核心理念是以單分子為目標的邊合成邊測序。該技術的操作平臺目前主要有Helicos公司的Heliscope、Pacific Biosciences公司的SMRT和Oxford Nanopore Technologies公司的納米孔技術等。該技術進一步降低了成本,可對混雜的基因物質進行單分子檢測,故對SNP、CNV的鑒定更具功效。但是目前其進入產品商業(yè)化,并最終投入臨床應用仍有很長的距離。


  三、基于分子構象的分子診斷技術


  (一)變性梯度凝膠電泳(denaturing gradient gel electrophoresis,DGGE)與單鏈構象多態(tài)性(single strand conformation polymorphism,SSCP)


  1970~1980年間,Fischer等[15]與Orita等[16]分別提出了利用核酸序列變異所導至雙鏈變性條件差異與單鏈空間折疊差異,通過變性與非變性PAGE對變異序列進行分離鑒定的方法,即DGGE與SSCP。上述2項技術均通過變異核酸分子在空間構象上的差異,通過特定條件下電泳速率的變化進行檢測。正因為核酸分子構象具有序列特異性,且對于序列的改變非常敏感,常常1個堿基的變化也能得到鑒定。但由于DGGE與SSCP均必須進行PCR后開蓋電泳的操作,現(xiàn)已不常見于臨床檢測。


  (二)變性高效液相色譜(denaturing high-performance liquid chromatography,dHPLC)


  1997年,Oefner和Underhill建立[17,18]了利用異源雙鏈變性分離變異序列、使用色譜洗脫鑒定的技術,稱為dHPLC,可自動檢測單堿基置換及小片段核苷酸的插入或缺失。對于存在一定比例變異序列的核酸雙鏈混合物,其經(jīng)過變性和復性過程后,體系內將出現(xiàn)2種雙鏈:一種為同源雙鏈,由野生正義鏈-野生反義鏈或變異正義鏈-變異反義鏈構成的核酸雙鏈;另一種為異源雙鏈,即雙鏈中1條單鏈為野生型,而另1條為變異型。由于存在部分堿基錯配的異源雙鏈 DNA與同源雙鏈DNA的解鏈特征不同,在相同的部分變性條件下,異源雙鏈因存在錯配區(qū)而更易變性,被色譜柱保留的時間短于同源雙鏈,故先被洗脫下來,從而在色譜圖中表現(xiàn)為雙峰或多峰的洗脫曲線。由于該技術使用了較高分析靈敏度的色譜技術進行檢測,可快速檢出<5%負荷的變異序列。但需注意的是,由于該技術主要通過異源雙鏈進行序列變異檢測,其不能明顯區(qū)分野生型與變異型的純合子。


  (三)高分辨率熔解分析(high-resolution melting analysis,HRMA)


  2003年,Wittwer等[19]首次革命性地使用過飽和熒光染料將PCR產物全長進行熒光被動標記,再通過簡單的產物熔解分析對單個堿基變化進行鑒定。該技術的原理也是通過異源雙鏈進行序列變異鑒定。待測樣本經(jīng)PCR擴增后,若存在序列變異雜合子,則形成異源雙鏈,其熔解溫度大大下降。此時由于雙鏈被飽和染料完全填充,其產物熔解溫度的變化便可通過熔解曲線的差異得以判定。對于變異純合子而言,HRMA也可利用其較高的分辨率完成PCR產物單個位點A:T雙鍵配對與G:C三建配對熱穩(wěn)定性差異的鑒定,但是對于Ⅱ、Ⅲ類SNP的純合子變異則無法有效區(qū)分。


  如何利用DNA構象對序列進行推測,從而避免成本較高的序列測定或操作繁瑣的雜交反應一直是分子生物學研究與應用的熱點問題。目前,使用構象變化對序列變異進行間接檢測的便捷性已得到一致肯定,尤其是HRMA可完成對變異序列單次閉管的擴增檢測反應。但需要注意的是,由于基于構象變化的分子檢測手段多無法通過探針雜交或核酸序列測定對檢測的特異性進行嚴格的保證,因此其只適合大規(guī)模的初篩,而真正的確診仍需要進行雜交或測序的驗證。


  四、定量PCR(quantitative PCR,qPCR)


  相比于其他分子診斷檢測技術,qPCR具有2項優(yōu)勢,即核酸擴增和檢測在同一個封閉體系中通過熒光信號進行,杜絕了PCR后開蓋處理所帶來擴增產物的污染;同時通過動態(tài)監(jiān)測熒光信號,可對低拷貝模板進行定量。正是由于上述技術優(yōu)勢,qPCR已經(jīng)成為目前臨床基因擴增實驗室接受程度最高的技術,在各類病毒、細菌等病原微生物的鑒定和基因定量檢測、基因多態(tài)性分型、基因突變篩查、基因表達水平監(jiān)控等多種臨床實踐中得到大量應用。但伴隨著qPCR技術的迅猛發(fā)展,有關這項技術的質量管理問題也日益突出,如何消除各類生物學變量所引起的檢測變異,減少或抑制實驗操作與方法學中的各種干擾因素是qPCR技術面臨的難題。


  (一)實時熒光定量PCR(real-time PCR)


  1.雙鏈摻入法


  1992年Higuchi等[20-21]通過在PCR反應液中摻入溴乙錠對每個核酸擴增熱循環(huán)后的熒光強度進行測定,提出了使用熒光強度與熱循環(huán)數(shù)所繪制的核酸擴增曲線,定量反應體系中初始模板的反應動力學(real-time PCR)模型,開創(chuàng)了通過實時閉管檢測熒光信號進行核酸定量的方法。核酸染料可以嵌入DNA雙鏈,且只有嵌入雙鏈時才釋放熒光,在每1次的擴增循環(huán)后檢測反應管的熒光強度,繪制熒光強度-熱循環(huán)數(shù)的S形核酸擴增曲線,以熒光閾值與擴增曲線的交點在擴增循環(huán)數(shù)軸上的投影作為循環(huán)閾值(Cycle threshold,Ct),則Ct與反應體系中所含初始模板數(shù)量呈負指數(shù)關系,推斷初始模板量。隨后Morrison[22]提出了使用高靈敏度的雙鏈染料SYBR Green I進行反應體系中低拷貝模板定量的方法。這一方法操作簡便,但由于僅使用擴增引物的序列啟動核酸擴增,其產物特異性無法得到充分保證。雖然在實時熒光定量PCR反應后可通過熔解曲線對產物特異性進行檢驗,但其特異性明顯遜于使用熒光探針進行檢測,因此雙鏈摻入法并未在臨床實踐中得到認可。


  2.Taqman探針


  由于雙鏈摻入法存在特異性較低的問題,1996年Heid[23]綜合之前發(fā)現(xiàn)的Taq酶的5'核酸酶活性與熒光共振能量轉移(fluorescence resonance energy transfer,FRET)探針的概念提出了使用Taqman探針進行qPCR的方法。TaqMan探針的本質是FRET寡核苷酸探針,在探針的5'端標記熒光報告基團,3'端標記熒光淬滅基團,利用Taq酶具有5'3'外切酶活性,在PCR過程中水解與靶序列結合的寡核苷酸探針,使熒光基團得以游離,釋放熒光信號。從而使能夠與靶序列雜交的探針在擴增過程中釋放熒光,通過real-time PCR的原理對其進行定量。由于其超高的特異性與成功的商品化推廣,Taqman探針已經(jīng)成為目前臨床使用最為廣泛的qPCR方法,其在各種病毒基因定量檢測、基因分型、腫瘤相關基因表達檢測等方面具有著不可替代的地位。


互聯(lián)網(wǎng)
推薦
關閉
磴口县| 玉田县| 武山县| 郧西县| 游戏| 承德县| 中超| 蓝山县| 岳池县| 肃南| 鸡东县| 康保县| 兴城市| 新化县| 根河市| 石门县| 井研县| 嵊泗县| 景洪市| 舞阳县| 奈曼旗| 宁晋县| 奇台县| 阳春市| 汽车| 柳江县| 启东市| 延川县| 环江| 苗栗市| 富裕县| 和顺县| 保山市| 垦利县| 饶阳县| 南充市| 阿克苏市| 武义县| 河源市| 大宁县| 石门县|